Abstract
With the progress of science and technology, intelligent wearable devices have become more and more popular in our daily life. Hydrogels are widely used in flexible sensors due to their good tensile and electrical conductivity. However, traditional water-based hydrogels are limited by shortcomings of water retention and frost resistance if they are used as the application materials of flexible sensors. In this study, the composite hydrogels formed by polyacrylamide (PAM) and TEMPO-Oxidized Cellulose Nanofibers (TOCNs) are immersed in LiCl/CaCl2/GI solvent to form double network (DN) hydrogel with better mechanical properties. The method of solvent replacement give the hydrogel good water retention and frost resistance, and the weight retention rate of the hydrogel was 80.5% after 15 days. The organic hydrogels still have good electrical and mechanical properties after 10 months, and can work normally at -20 °C, and has excellent transparency. The organic hydrogel show satisfactory sensitivity to tensile deformation, which has great potential in the field of strain sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.