Abstract

A new Ru(II) complex of [Ru(phen)(2)(Hcdpq)](ClO(4))(2) {phen = 1,10-phenanthroline, Hcdpq = 2-carboxyldipyrido[3,2-f:2',3'-h]quinoxaline} was synthesized and characterized. The spectrophotometric pH and calf thymus DNA (ct-DNA) titrations showed that the complex acted as a dual molecular light switch for pH and ct-DNA with emission enhancement factors of 17 and 26, respectively. It was shown to be capable of distinguishing ct-DNA from yeast RNA with this binding selectivity being superior to two well-known DNA molecular light switches of [Ru(bpy)(2)(dppz)](2+) {bpy =2,2'-bipyridine, and dppz = dipyrido-[3,2-a:2',3'-c]phenazine}and ethidium bromide. The complex bond to ct-DNA probably in groove mode with a binding constant of (4.67 ± 0.06) × 10(3) M(-1) in 5 mM Tris-HCl, 50 mM NaCl (pH = 7.10) buffer solution, as evidenced by UV-visible absorption and luminescence titrations, the dependence of DNA binding constants on NaCl concentrations, DNA competitive binding with ethidium bromide, and emission lifetime and viscosity measurements. To get insight into the light-switch mechanism, theoretical calculations were also performed by applying density functional theory (DFT) and time-dependent DFT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.