Abstract
Skin wound healing in dynamic environments remains challenging. Conventional gels are not ideal dressing materials for wound healing due to difficulties in completely sealing wounds and the inability to deliver drugs quickly and precisely to the injury. To tackle these issues, we propose a multifunctional silk gel that rapidly forms strong adhesions to tissue, has excellent mechanical properties, and delivers growth factors to the wound. Specifically, the presence of Ca2+ in the silk protein leads to a solid adhesion to the wet tissue through a chelation reaction with water-trapping behavior; the integrated chitosan fabric and CaCO3 particles ensure enhanced mechanical strength of the silk gel for better adhesion and robustness during wound repair; and the preloaded growth factor further promoted wound healing. The results showed the adhesion and tensile breaking strength were as high as 93.79 kPa and 47.20 kPa, respectively. MSCCA@CaCO3-aFGF could remedy the wound model in 13 days, with 99.41 % wound shrinkage without severe inflammatory responses. Due to strong adhesion properties and mechanical strength, MSCCA@CaCO3-aFGF can be a promising alternative to conventional sutures and tissue closure staples for wound closure and healing. Therefore, MSCCA@CaCO3-aFGF is expected to be a strong candidate for the next generation of adhesives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.