Abstract

An appropriate flowering period is an important selection criterion in maize breeding. It plays a crucial role in the ecological adaptability of maize varieties. To explore the genetic basis of flowering time, GWAS and GS analyses were conducted using an associating panel consisting of 379 multi-parent DH lines. The DH population was phenotyped for days to tasseling (DTT), days to pollen-shedding (DTP), and days to silking (DTS) in different environments. The heritability was 82.75%, 86.09%, and 85.26% for DTT, DTP, and DTS, respectively. The GWAS analysis with the FarmCPU model identified 10 single-nucleotide polymorphisms (SNPs) distributed on chromosomes 3, 8, 9, and 10 that were significantly associated with flowering time-related traits. The GWAS analysis with the BLINK model identified seven SNPs distributed on chromosomes 1, 3, 8, 9, and 10 that were significantly associated with flowering time-related traits. Three SNPs 3_198946071, 9_146646966, and 9_152140631 showed a pleiotropic effect, indicating a significant genetic correlation between DTT, DTP, and DTS. A total of 24 candidate genes were detected. A relatively high prediction accuracy was achieved with 100 significantly associated SNPs detected from GWAS, and the optimal training population size was 70%. This study provides a better understanding of the genetic architecture of flowering time-related traits and provides an optimal strategy for GS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.