Abstract

Dual emission featuring both thermally activated delayed fluorescence (TADF) and phosphorescence was engineered into a single metal-free molecule, phenyl(10-phenyl-10H-phenoselenazin-3-yl)methanone. Selenium incorporated into the molecule increases the spin-orbit coupling to facilitate both TADF and phosphorescence, whereas donor-acceptor units promote TADF emission. The relative contribution of the green TADF and yellow phosphorescence can be controlled by the driving voltage of the devices. At low voltage, phosphorescence emission dominates the electroluminescence, whereas TADF is the major component at high voltages. The mechanism of dual emission was explored using experimental and theoretical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.