Abstract
In this paper, a dual-polarization 4-bit coding metasurface is proposed to achieve the flexible manipulation of different polarization electromagnetic wave reflection angles and the generation of dual-mode vortex beams by independent manipulation of orthogonal linearly polarized waves. The proposed metasurface is composed of an H-type metal patch, dielectric substrate, and metal grounding layer from top to bottom. To prove the proposed concept, we design and fabricate four coding metasurfaces based on the superposition theorem and holographic theory. One of the coding metasurfaces is designed to verify the ability to manipulate the beam angle, and each of the other three coding metasurfaces is designed to carry a vortex beam with different topological charges under orthogonal linearly polarized waves with a central frequency of 24 GHz. The experimental results show that the theoretical design is highly consistent with the simulation results. Therefore, it is verified that our proposed 4-bit dual-polarization coding metasurface has a strong and flexible ability to manipulate the beam reflection angle and generate a high-performance dual-mode vortex beam antenna. Because of the wide application prospect of vortex beams in the communication field, we have reason to believe that the proposed ultra-thin dual-mode vortex generator will have potential applications in wireless communication systems in the fields of images and microwaves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.