Abstract

In this paper, we theoretically and experimentally demonstrate that metal coated apertured probes are efficient near-field probes on surfaces with high reflectivity for the scattering as well as for the collection mode near-field scanning optical microscopy (NSOM). We show that a blunt apertured metal coated tip is very effective in suppressing image dipoles which affect strongly the signals scattered from frequently used sharp metal tips or gold nanoparticle attached probes. By using a simultaneous collection and scattering mode (dual mode) NSOM we measure the near-field images of surface plasmon polariton (SPP) launched from a slit. The collection mode measures propagating SPP along lateral distance in a long scan range with high signal-to-noise ratio, and the scattering mode measures the polarization resolved near-field of SPP. Comparisons of the measured data obtained in the dual mode enable to easily characterize SPP and to separate the measured near-field into the propagating SPP and the directly transmitted light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call