Abstract

An anthracene derivative, 9,10-dicyanoanthracene, crystallizes as fluorescent needle-like single crystals that can be readily plastically bent in two directions. Spatially resolved photoluminescence analysis revealed that this material has robust optoelectronic properties that are preserved upon extreme crystal deformation. The highly flexible crystals were successfully tested as efficient switchable optical waveguiding elements for both active and passive light transduction, and the mode of operation depends on the wavelength of the incident light. This prototypical dual-mode organic optical crystalline fiber brings mechanically compliant molecular organic crystals closer to applications as novel light-transducing media for wireless transfer of information in all-organic micro-optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.