Abstract

Abstract A fluorescent and colorimetric dual-mode “light-on” assay for the detection of dopamine (DA) was developed based on Fe3+-H2O2-OPD system. In general, Fe3+ could catalyze the H2O2-mediated oxidation of colorless and nonfluorescent o-phenylenediamine (OPD), and the resultant 2,3-diaminophenazine (DAP) exhibits a visible yellow color and yellow fluorescence. However, the reaction rate is extremely slow. By comparison, the introduction of DA can trigger a typical Fenton reaction that generates hydroxyl radical (−OH) continuously, thus increasing the conversion rate of OPD to DAP. Correspondingly, both color and fluorescence of the sensing system are enhanced obviously. On the basis of this fact, a sensor with dual readout for the detection of DA was established via measuring the fluorescent and colorimetric signals of the Fe3+-H2O2-OPD system. The linear ranges were 0.05–20 mM and 0.10–18 mM, and the detection limits were calculated to be 15 and 65 nM (S/N = 3) for fluorescent and colorimetric detection, respectively. The proposed dual-readout method features with simplicity, high sensitivity, visualization and good accuracy. Moreover, the method has been successfully applied to the detection of DA in human urine with satisfactory results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call