Abstract
We demonstrate a tunable femtosecond dual-beam-mode (cylindrical vector beam [CVB] and Gaussian beam [GB]), dual-signal-wavelength optical parametric oscillator based on a temperature-tuned lithium triborate crystal, synchronously pumped by a frequency-doubled mode-locked Yb-doped fiber laser. When fixing the CVB wavelength at 780 nm, the central wavelength of the GB signal could be continuously tuned from 664 to 722 nm. The maximum total signal output power is 515 mW at a 4 W pump with dual-wavelength operation (664 and 780 nm). All the measured signal pulse durations are around 150 fs. Moreover, sum-frequency-generation with Gaussian mode tuning from 548 to 588 nm is obtained, with the maximum power of 52 mW at 548 nm. Thanks to the dual-channel configuration, the wavelengths of a CVB and GB can be tuned independently. Such a flexible and versatile configuration makes it a practical tool for many applications such as high-resolution microscopy and high-capacity optical communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.