Abstract

Ventricular assist devices (VADs) are implanted in patients suffering from end-stage heart failure to sustain the blood circulation. Real-time volume measurement could be a valuable tool to monitor patients and enable physiological control strategies to provide individualized therapy. However, volume measurement using one sensor modality requires re-calibration in the critical time post VAD implantation. To overcome this limitation, we have integrated ultrasound and impedance volume measurement techniques into a cannula of an apical VAD. We tested both modalities across a volume range from 140-420 mL using two differently sized and shaped biventricular silicon heart phantoms, which were subjected to physiological pressures in an in-vitro test bench. We compared results from standard calibrated measurements with calculations found by a quadratic optimization for the single modality and their combination (dual-modality) and validated the results using twofold cross-validation. The dual-modality approach resulted in most favorable limits of agreement (LOA) of -0.83 ± 1.54% compared to -13.88 ± 5.90% for ultrasound and -43.45 ± 10.28% for electric impedance, separately. The results of the dual-modality approach were as accurate as the standard calibrated measurement and valid over a large range of volumes (140-420 mL). In this in-vitro study, we show how a dual-modality ventricular volume measurement of ultrasound and electric impedance increases the robustness and renders calibration obsolete. Ventricular volumes could be measured accurately in the critical period post VAD implantation despite ventricular remodeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call