Abstract
Pretargeted drug delivery has been explored for decades as a promising approach in cancer therapy. An image-guided pretargeting strategy significantly enhances the intrinsic advantages of this approach since imaging the pretargeting step can be used for diagnostic purposes, while imaging of the drug delivery step can be utilized to evaluate drug distribution and assess therapeutic response. A trastuzumab (Tz)-based HER2 pretargeting component (Tz-TCO-[89Zr-DFO]) was developed by conjugating with trans-cyclooctene (TCO) bioorthogonal click chemistry functional groups and deferoxamine (DFO) to enable radiolabeling with a 89Zr PET tracer. The drug delivery component (HSA-DM1-Tt-[99mTc-HyNic]) was developed by conjugating human serum albumin (HSA) with mertansine (DM1), tetrazine (Tt) functional groups, and a HyNic chelator and radiolabeling with 99mTc. For ex vivo biodistribution studies, pretargeting and delivery components (without drug) were administered subsequently to mice bearing human HER2(+) breast cancer xenografts, and a high tumor uptake of Tz-TCO-[89Zr-DFO] (26.4% ID/g) and HSA-Tt-[99mTc-HyNic] (4.6% ID/g) was detected at 24 h postinjection. In vivo treatment studies were performed in the same HER2(+) breast cancer model using PET-SPECT image guidance. The increased tumor uptake of the pretargeting and drug delivery components was detected by PET-CT and SPECT-CT, respectively. The study showed a significant 92% reduction of the relative tumor volume in treated mice (RTV = 0.08 in 26 days), compared to the untreated control mice (RTV = 1.78 in 11 days) and to mice treated with only HSA-DM1-Tt-[99mTc-HyNic] (RTV = 1.88 in 16 days). Multimodality PET-SPECT image-guided and pretargeted drug delivery can be utilized to maximize efficacy, predict therapeutic response, and minimize systemic toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.