Abstract

We present a fiber-based dual-modal imaging system that combines non-contact photoacoustic tomography (NCPAT) and fluorescence imaging by using double cladding fiber (DCF). The NCPAT system utilizing an all-fiber heterodyne interferometer as an ultrasound detector measures the photoacoustic signal at the sample surface without physical contact. Fluorescence imaging system is composed of fiber-optics to deliver the excitation light and the emission light. For combined system the probe consists of a specially fabricated DCF coupler and a lensed fiber so that we can simultaneously acquire the signals of two systems with the same probe. The DCF has a core and two claddings, inner and outer, which allows two concentric light-guiding channels via the core and the inner cladding. The lensed fiber of the DCF probe is compactly fabricated to focus the interferometer light and the excitation light, and to efficiently collect the fluorescence signal. To demonstrate the feasibility of the proposed dual-modal system, we have conducted phantom experiments using tissue mimicking phantoms which contained a couple of tubes filled with fluorescein solution and black ink, respectively. The proposed imaging system is implanted with fiber-optic configurations so that it has the potential for minimally invasive and improved diagnosis and guided treatment of diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.