Abstract

Bacterial infections seriously harm human health and cause many severe diseases, which triggered urgent demands to exploit specific and sensitive biosensor strategies for Staphylococcus aureus detection. Here, a colorimetric and photoelectrochemical dual-mode biosensor for S. aureus assay based on FePor-TPA was constructed. 2D FePor-TPA thin film and its bulk powder (FePor-TPA) were synthesized by in situ growth on ITO and a solvothermal condition, respectively, both of which exhibited excellent peroxidase-like and catalase-like activity, originating from their metalloporphyrin linkers. Benefiting from the in situ growth on ITO electrodes, the 2D FePor-TPA thin film also possessed a more ordered stacking mode and in turn exhibited good electrical conductivity, stable initial photocurrent, and high sensitivity to O2. As for bulk FePor-TPA, its porous structure and high specific surface area make it a possible scaffold to load an amount of AuNPs, the rabbit anti-Staphylococcus aureus Rosenbach tropina antibody (Ab2), and GOx for constructing the signal probe (GOx/Ab2@Au@FePor-TPA) and realizing catalytic amplification. With these satisfactory features in mind, the 2D FePor-TPA thin film and its bulk powder (FePor-TPA) were utilized to construct a dual and signal-on bioplatform for sensitively and selectively detecting S. aureus, which, as far as we know, has not been reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call