Abstract

Developing electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant to massively generate hydrogen energy by water splitting. In this work, cobalt and tungsten dual metal-loaded N-doped porous carbon electrocatalysts derived from silk fibroin were successfully prepared through facile carbonization and chemical activation by KCl and applied as efficient electrocatalysts for HER and OER. After chemical activation, the resulting catalysts present a unique hierarchical porous structure with micro-, meso-, and macropores, which is able to expose more implantation sites for catalytic active metals and will in turn promote the efficient diffusion of the electrolyte. The catalyst under the optimized condition (CoW@ACSF) has a specific area of 326.01 m2 g-1. The overpotential at a current density of 10 mA cm -2 of CoW@ACSF is 138.42 ± 10.39 mV toward HER and 492.05 ± 19.04 mV toward OER. Furthermore, the overpotential only increases 101.2 mV toward HER and 66.00 mV toward OER after the long-term stability test of chronopotentiometric test over 10 h, which confirms the excellent stability of the CoW@ACSF, owing to its unique carbon shell structure. This work gives an insight into the design and engineering of silk fibroin-derived carbon materials for electrocatalysis toward HER and OER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.