Abstract

Forthe first time, dual metal ions (Ti4+-Zr4+) were successfully modified into the channel of magnetic mesoporous silica to obtain an affinity probe for highly selective capture of endogenous phosphopeptides in biological samples. The newly prepared Fe3O4@mSiO2@Ti4+-Zr4+ composites possessed the advantages of ordered mesoporous channels, superparamagnetism, and enhanced affinity properties of dual metal ions of Ti4+ and Zr4+. The phosphopeptide enrichment efficiency of the Fe3O4@mSiO2@Ti4+-Zr4+ composite was investigated, and the result indicated an ultrahigh size exclusive ability (weight ratio of β-casein tryptic digests, BSA, and α-casein protein reached up to 1:1000:1000). Compared tomagnetic affinity probes with single metal ions (Fe3O4@mSiO2@Ti4+, Fe3O4@mSiO2@Zr4+), thecomposite possessed stronger specificity, higher sensitivity, and better efficiency; and more importantly, it showed much enhanced enrichment ability towards both mono- and multi-phosphorylated peptides. Additionally, by utilizing the Fe3O4@mSiO2@Ti4+-Zr4+ affinity probe, a total number of 104 endogenous phosphopeptides including 95 mono-phosphopeptides and 9 multi-phosphopeptides were captured and identified from human saliva, indicating the great potential for the application of the novel probe for the peptidome analysis in the future. Graphic abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call