Abstract

Astrocytes play an essential role in the development of neural circuits by positioning transporters and receptors near synapses and secreting factors that promote synaptic maturation. However, the mechanisms that coordinate astrocyte and neural maturation remain poorly understood. Using invivo imaging in unanesthetized neonatal mice, we show that bursts of neuronal activity passing through nascent sound processing networks reliably induce calcium transients in astrocytes. Astrocyte transients were dependent on intense neuronal activity and constrained to regions near active synapses, ensuring close spatial and temporal coordination of neuron and astrocyte activity. Astrocyte responses were restricted to the pre-hearing period and induced by synergistic activation of two metabotropic glutamate receptors, mGluR5 and mGluR3, which promoted IP3R2-dependent calcium release from intracellular stores. The widespread expression of these receptors by astrocytes during development and the prominence of neuronal burst firing in emerging neural networks may help coordinate the maturation of excitatory synapses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call