Abstract
In diagnostic medicine serum albumin is considered as an important biomarker for assessment of cardiovascular functions and diagnosis of renal diseases. Herein, we report a novel donor-π-π-acceptor fluorophore for selective detection of serum albumin in urine samples. In our design, a phenolic donor was conjugated with a tricyanofuran (TCF) acceptor through a dimethine bridge via a simple condensation reaction. The stereoelectronic effects of the incorporated methoxy (-OCH3) groups and the TCF moiety-in conjunction with the extended π-electron conjugation-led to dual red and NIR-I absorption/emission in water. Moreover, due to superior electron transfer between a phenolate donor and the TCF acceptor and the subsequent energy decay from the charge transfer states, the fluorophore displayed negligible fluorescence emission in water and other polar solvents. Consequently, we have been able to utilize the fluorophore for quantitative estimation of serum albumin both in the red (<700nm) and NIR-I (700-900nm) regions of the electromagnetic spectrum with excellent reproducibility. The fluorophore selectively recognized human serum albumin over other proteins and enzymes with a limit of detection of 10mg/L and 20mg/L in simulated urine samples at red and NIR-I emission window of the spectrum, respectively. By molecular docking analysis and experimental displacement assays, we have shown that the selective response of the fluorophore toward human serum albumin is due to tighter supramolecular complexation between the fluorophore and the protein at subdomain IB, and the origin of the NIR-I (780nm) emission was attributed to a twisted conformer of phenolate-π-π-TCF system in aqueous solution. These findings indicate that the fluorophore could be utilized for quantitative detection of human serum albumin in urine samples for clinical diagnosis of albuminuria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.