Abstract

Based on the fact that the inductor and capacitor are of a non-integer order by nature, to provide a more accurate theoretical basis for the optimal control of the converter, the fractional-order model of the Buck-Boost converter in the continuous mode of current is established according to the fractional-order calculus theory. The fractional-order PIλ control system of the fractional-order Buck-Boost converter is designed to compare the performance of the integer-order PI controller with the fractional-order controller. Secondly, the sparrow search algorithm is applied to the optimal design of the fractional-order PIλ control system of the fractional-order Buck-Boost converter to improve the system’s phase margin, stability, and robustness. Finally, the simulation is verified on the Matlab/Simulink simulation platform and compared with the integer-order PI controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call