Abstract

Gear engagement is the most important part in gear-shift process of automated manual transmission (AMT). However, it is practical to encounter complicated nonlinearities, uncertainties, and multistage characteristics in the system model, so the controller design for the AMT gear engagement becomes challenging. This paper proposes a dual-loop self-learning fuzzy control framework. In the outer loop, the self-learning rules based on fuzzy logic is designed to adjust desired trajectory of actuator motor. In the inner loop, the gear engagement is divided into three stages, and a fuzzy controller with model reference self-learning algorithm is designed, which controls the actuator motor to track the desired trajectory. Besides, the control parameters could be adjusted to be optimal automatically when the parameters change. Results of simulations and experiments indicate that the proposed method is able to realize the smooth and fast control of gear engagement. In addition, the self-learning fuzzy controller can be extended to deal with other nonlinear systems with uncertain and even unknown parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.