Abstract

Snake-like robots, which have high degrees of freedom and flexibility, can effectively perform an obstacle avoidance motion in a narrow and unstructured space to complete assignments efficiently. However, accurate closed-loop control is difficult to achieve. On the one hand, this is because adding too many sensors to the robot will significantly increase its mass, size, and cost. On the other hand, the more complex structure of the hyper-redundant robot also challenges the more elaborate closed-loop control strategy. For these reasons, a cable-driven snake-like robot, which is compact and low cost, with force transducers and angle sensors, is designed in this article. The simpler and more direct kinematic model is studied, which applies to a widely used kinematics algorithm. Based on the kinematic model, the inverse dynamics are resolved. Finally, this article analyzes the sources of the motion errors and achieves dual-loop control through force-feedback and pose-feedback. The experiment results show that the robot’s structure and dual-loop control strategy function with high accuracy and reliability, meeting the requirements of engineering applications and high-precision control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.