Abstract

Oral mucosal ulcer is the most prevalent oral mucosal lesion, affecting the quality of life. Due to the moist and highly dynamic oral lining, the existing oral mucoadhesives are unable to serially address the challenges of residency, hemorrhage, bacterial infection and inflammatory reaction. Herein, a dual-light defined oral mucoadhesive (ZPTA-G/HMA) was proposed, with a methacrylate gelatin-methacrylate hyaluronic acid (GelMA-HAMA, G/HMA) double network hydrogel as a matrix, tannic acid (TA) as a high content anchor moiety provider for the moist oral mucosa, and polydopamine modified zinc oxide (ZnO@PDA, ZP) as a photocatalytic antibacterial substance. This platform had good adhesive and hemostatic properties both in vitro and in vivo. Under 520 nm green light (GL) irradiation, ZPTA-G/HMA would anchor to the wet mucosa surface by crosslinking and exert broad-spectrum antibacterial ability (even including Candida albicans) by in situ producing reactive oxygen species (ROS). Moreover, under 808 nm near-infrared (NIR) irradiation, the increased release of TA combined with the photothermal effect of ZP endowed ZPTA-G/HMA with enhanced anti-inflammatory and pro-healing performance. Collectively, ZPTA-G/HMA could be switched by light sources to achieve the dual-mode real-time adjustment of in situ anti-bacterial function and controlled anti-inflammation, combined with ideal mucosal residence, thus promising in developing personalized sequential strategies for varied oral mucosal lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.