Abstract
AbstractLithium metal batteries, which are constructed by lithium‐rich manganese‐based oxide (LRMO) cathode and Li metal anode, have attracted intensive attention due to its high energy density. However, the instability of both cathode and anode limits the practical application due to undesirable electrolyte decomposition at high voltage. To address these issues, an electrolyte engineering strategy is proposed for constructing robust, highly Li+‐conductive solid electrolyte interphases on both cathode and anode with chlorobenzene as the additive. Due to the high mechanical stability and interface dynamics of the LiCl‐endorsed, LiF‐rich cathode electrolyte interphase, both the electrolyte decomposition and transition metal ion dissolution are effectively inhibited. Meanwhile, robust LiF/LiCl‐rich solid electrolyte interphase can effectively repress the overgrowth of Li dendrites. The Li||LRMO battery with optimized 2.0 wt.% chlorobenzene demonstrates a high‐capacity retention of 86.1% after 200 cycles at 0.5 C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.