Abstract
The localization subregions of stationary waves in continuous disordered media have been recently demonstrated to be governed by a hidden landscape that is the solution of a Dirichlet problem expressed with the wave operator. In this theory, the strength of Anderson localization confinement is determined by this landscape, and continuously decreases as the energy increases. However, this picture has to be changed in discrete lattices in which the eigenmodes close to the edge of the first Brillouin zone are as localized as the low energy ones. Here we show that in a 1D discrete lattice, the localization of low and high energy modes is governed by two different landscapes, the high energy landscape being the solution of a dual Dirichlet problem deduced from the low energy one using the symmetries of the Hamiltonian. We illustrate this feature using the one-dimensional tight-binding Hamiltonian with random on-site potentials as a prototype model. Moreover we show that, besides unveiling the subregions of Anderson localization, these dual landscapes also provide an accurate overall estimate of the localization length over the energy spectrum, especially in the weak-disorder regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.