Abstract
Persistent or chronic pain is the primary reason people seek medical care, yet current therapies are either limited in efficacy or cause intolerable side effects. Diverse mechanisms contribute to the basic phenomena of nociceptor hyperexcitability that initiates and maintains pain. Two prominent players in the modulation of nociceptor hyperexcitability are the transient receptor potential vanilloid type 1 (TRPV1) ligand-gated ion channel and the voltage-gated potassium channel, Kv7.2/3, that reciprocally regulate neuronal excitability. Across many drug development programs targeting either TRPV1 or Kv7.2/3, significant evidence has been accumulated to support these as highly relevant targets; however, side effects that are poorly separated from efficacy have limited the successful clinical translation of numerous Kv7.2/3 and TRPV1 drug development programs. We report here the pharmacological profile of 3 structurally related small molecule analogues that demonstrate a novel mechanism of action (MOA) of dual modulation of Kv7.2/3 and TRPV1. Specifically, these compounds simultaneously activate Kv7.2/3 and enable unexpected specific and potent inhibition of TRPV1. This in vitro potency translated to significant analgesia in vivo in several animal models of acute and chronic pain. Importantly, this specific MOA is not associated with any previously described Kv7.2/3 or TRPV1 class-specific side effects. We suggest that the therapeutic potential of this MOA is derived from the selective and specific targeting of a subpopulation of nociceptors found in rodents and humans. This efficacy and safety profile supports the advancement of dual TRPV1-Kv7.2/3 modulating compounds into preclinical and clinical development for the treatment of chronic pain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.