Abstract

This paper proposes a new image feature extraction method for face recognition, called dual-kernel based two dimensional linear discriminant analysis (D-K2DLDA), by integrating multiple kernel discriminant analysis with the existing K2DFDA method. The proposed method deals with a face image directly as a matrix, instead of a stacked vector from rows or columns of the image. Moreover, we separately perform an iterative scheme for kernel parameter optimization for each of the two kernels, based on the maximum margin criterion and the damped Newton’s method, followed by a fusion procedure of the two kernels. Experimental results on the ORL and UMIST face databases show the effectiveness of D-K2DLDA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.