Abstract
This paper presents a full characterization of a Dual Josephson Impedance Bridge (DJIB) at frequencies up to 80 kHz by using the DJIB to compare the best available impedance standards that are (a) directly traceable to the quantum Hall effect, (b) used as part of international impedance comparisons, or (c) believed to have calculable frequency dependence. The heart of the system is a dual Josephson Arbitrary Waveform Synthesizer (JAWS) source that offers unprecedented flexibility in high-precision impedance measurements. The JAWS sources allow a single bridge to compare impedances with arbitrary ratios and phase angles in the complex plane. The uncertainty budget shows that both the traditional METAS bridges and the DJIB have comparable uncertainties in the kilohertz range. This shows that the advantages of the DJIB, including the flexibility which allows the comparison of arbitrary impedances, the wide frequency range and the automated balancing procedure, are obtained without compromising the measurement uncertainties. These results demonstrate that this type of instrument can considerably simplify the realization and maintenance of the various impedance scales. In addition, the DJIB is a very sensitive tool for investigating the frequency-dependent systematic-errors that can occur in impedance construction and in the voltage provided by the JAWS source at frequencies greater than 10 kHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.