Abstract

Within this study, the electrochemically inert, molten carbonate fuel cell (MCFC) γ-LiAlO2 matrix is replaced by oxygen ion conducting ceramics, typical for solid oxide fuel cell (SOFC) application. Such solution leads to synergistic ion transport both by molten carbonate mix (CO32-) and yttria-stabilized zirconia (YSZ) or samaria-doped ceria (SDC) matrix (O2-).Single unit cell tests confirm that application of hybrid ionic membrane increases the performance (power density) of the MCFC over pure γ-LiAlO2 for a wide range of operating temperatures (600 °C–750 °C). Cell power density with SDC and YSZ matrices is 2% and 13% higher, respectively, compared to the γ-LiAlO2 at typical 650 °C operating temperature of MCFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.