Abstract

A novel electrochemical sensor capable of concurrently detecting Pb2+ and Hg2+ ions has been innovatively engineered. This sensor utilizes the anodic stripping voltammetry technique (ASV) with a composite consisting of carbon quantum dots and aminothiazole (CQD-AT). In this composite, both the carbon quantum dots and aminothiazole contribute significantly to the electroactive surface area, boasting an abundance of functional groups that include oxygen and nitrogen atoms. These functional groups serve as active sites that enhance sensor sensitivity by facilitating the electrostatic interaction-based adsorption of heavy metal ions. Aminothiazole surface is evenly covered with CQDs, which are essential for metal gets reoxidized into metal ions for stripping analysis. Due to this unique modification, the Pb2+ and Hg2+ electrochemical sensor using the CQD-AT composite coated on carbon fiber paper electrode (CQD-AT/CFP) exhibits superior analysis performance such as wide linear range (0.6 × 10–11–160 × 10–6 M) for Pb2+ and Hg2+ with a limit of detection (LOD) of 3.0 pM and 6.2 pM for Pb2+ and Hg2+. CQD-AT/CFP modified electrode can be considered as a potential material for electrochemical simultaneous determination of Pb2+ and Hg2+ in different water samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.