Abstract

Constructing stable electrodes which function over long timescales at large current density is essential for the industrial realization and implementation of water electrolysis. However, rapid gas bubble detachment at large current density usually results in peeling-off of electrocatalysts and performance degradation, especially for long term operations. Here we construct a mechanically-stable, all-metal, and highly active CuMo6S8/Cu electrode by in-situ reaction between MoS2 and Cu. The Chevrel phase electrode exhibits strong binding at the electrocatalyst-support interface with weak adhesion at electrocatalyst-bubble interface, in addition to fast hydrogen evolution and charge transfer kinetics. These features facilitate the achievement of large current density of 2500 mA cm−2 at a small overpotential of 334 mV which operate stably at 2500 mA cm−2 for over 100 h. In-situ total internal reflection imaging at micrometer level and mechanical tests disclose the relationships of two interfacial forces and performance of electrocatalysts. This dual interfacial engineering strategy can be extended to construct stable and high-performance electrodes for other gas-involving reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.