Abstract
The aid of beneficial microbes, which is a well-accepted strategy, may improve plant salt tolerance. However, the mechanisms that underpin it are unclear. In this study, seedling experiments were carried out to assess the effect of Bradyrhizobium and Enterobacter on the germination, growth, nonenzymatic and enzymatic content in soybean (Glycine max L.) under salt stress. Water was sprayed on the seeds as a control, and with 75 mM, 150 mM NaCl as salt stress. The findings demonstrate that salt stress (75, 150 mM) caused a significant decrease in germination, morphological criteria, and membrane stability index (MSI) when compared to control seeds but increased lipid peroxidation (MDA), electrolyte leakage (EL), osmotic pressure, proline, citric acid, sugar content, antioxidant enzymes. Furthermore, endophytic Bradyrhizobium and Enterobacter inoculation resulted in a significant rise in all of the above metrics.; however, these treatments resulted in significant reductions in ROS, EL, and MDA in stressed plants. Finally, the findings showed that combining Bradyrhizobium and Enterobacter was the most efficient in reducing the harmful effects of salt on soybean plants by boosting antioxidant up-regulation and lowering membrane leakage and ROS.
Highlights
Soil salinity harms plant growth and has become one of the major limiting factors in agricultural production throughout the globe
This study showed that all oxidative biomarkers were relatively low by inoculation of endophytic bacteria concerning the levels reported in salt-stressed plants
Endophytic bacteria are recognized for being osmoregulated, its accumulation in plant tissues, on the other hand, depends on plant species and agriculture methods
Summary
Soil salinity harms plant growth and has become one of the major limiting factors in agricultural production throughout the globe. Ion poisoning is caused by prolonged salt stress due to increasing Na+ and Cl- ions concentrations. Such adverse circumstances cause oxidative stress by producing reactive oxygen species (ROS), such as hydrogen peroxide, superoxide, singlet oxygen, and hydroxyl radicals, all of which are harmful to cell survival (Silva et al, 2020). Received in revised form: 31 Aug 2021. From Volume 49, Issue 1, 2021, Notulae Botanicae Horti Agrobotanici Cluj-Napoca journal uses article numbers in place of the traditional method of continuous pagination through the volume. The journal will continue to appear quarterly, as before, with four annual numbers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.