Abstract

NADPH oxidase-derived reactive oxygen species (ROS) potentiate receptor tyrosine kinase (RTK) signaling, resulting in enhanced angiogenesis and tumor growth. In this study, we report that BJ-1301, a hybrid of pyridinol and alpha-tocopherol, exerts anticancer effects by dual inhibition of NADPH oxidase and RTK activities in endothelial and lung cancer cells. BJ-1301 suppresses ROS production by blocking translocation of NADPH oxidase cytosolic subunits to the cell membrane, thereby inhibiting activation. The potency of RTK inhibition by BJ-1301 was lower than that of sunitinib (a multi-RTK inhibitor), but the inhibition of downstream signaling pathways (e.g., ROS generation) and subsequent biological changes (e.g., NOX2 induction) by BJ-1301 was superior. Consistently, BJ-1301 inhibited cisplatin-resistant lung cancer cell proliferation more than sunitinib did. In xenograft chick or mouse tumor models, BJ-1301 inhibited lung tumor growth, to an extent greater than that of sunitinib or cisplatin. Treatments with BJ-1301 induced regression of tumor growth, potentially due to downregulation of autocrine-stimulatory ligands for RTKs, such as TGFα and stem cell factor, in tumor tissues. Taken together, the current study demonstrates that BJ-1301 is a promising anticancer drug for the treatment of lung cancer. Mol Cancer Ther; 16(10); 2144-56. ©2017 AACR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.