Abstract

In the treatment of cardiovascular disease, it could be of therapeutic interest to associate the hypotensive effects due to the inhibition of angiotensin II formation with the diuretic and natriuretic responses induced by the protection of the endogenous atrial natriuretic peptide (ANP). Investigation of this hypothesis requires an orally active compound able to simultaneously inhibit angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), which is involved in renal ANP metabolism. Such compounds have been rationally designed by taking into account the structural characteristics of the active site of both peptidases. Among them, RB 105, N-[(2S,3R)-2-mercaptomethyl-1-oxo-3-phenylbutyl]-(S)-alanine, inhibited NEP and ACE with Ki values of 1.7 +/- 0.3 nM and 4.2 +/- 0.5 nM, respectively. Intravenous infusion of RB 105 in conscious spontaneously hypertensive rats prevented the pressor response to exogenous angiotensin I and potentiated the natriuretic response to ANP. Infusion of RB 105, at 2.5, 5, 10, 25, and 50 mg/kg per hr decreased blood pressure dose-dependently in conscious catheterized spontaneously hypertensive rats and increased diuresis and natriuresis. Infusion of RB 105 as a bolus of 25 mg/kg followed by 25 mg/kg per hr similarly decreased blood pressure and increased natriuresis in three different models of hypertension (renovascular, deoxycorticosterone acetate-salt, and spontaneously hypertensive rats). Mixanpril, a lipophilic prodrug of RB 105 (ED50 values when given orally to mice, 0.7 mg/kg for NEP; 7 mg/kg for ACE), elicited dose-dependent hypotensive effects of long duration in spontaneously hypertensive rats after oral administration [-37 mmHg for 50 mg/kg twice a day (1 mmHg = 133 Pa) and is therefore the first dual NEP/ACE inhibitor potentially useful for clinical investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.