Abstract

AbstractThe molecular mechanisms for the photoconversion of fluorescent proteins remain elusive owing to the challenges of monitoring chromophore structural dynamics during the light‐induced processes. We implemented time‐resolved electronic and stimulated Raman spectroscopies to reveal two hidden species of an engineered ancestral GFP‐like protein LEA, involving semi‐trapped protonated and trapped deprotonated chromophores en route to photoconversion in pH 7.9 buffer. A new dual‐illumination approach was examined, using 400 and 505 nm light simultaneously to achieve faster conversion and higher color contrast. Substitution of UV irradiation with visible light benefits bioimaging, while the spectral benchmark of a trapped chromophore with characteristic ring twisting and bridge‐H bending motions enables rational design of functional proteins. With the improved H‐bonding network and structural motions, the photoexcited chromophore could increase the photoswitching‐aided photoconversion while reducing trapped species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.