Abstract
In this paper, the secrecy performance of a dual-hop mixed radio-frequency/underwater optical wireless communication (RF-UOWC) system is investigated. The considered system consists of one single antenna source node (S) communicating with one destination node (D), considered as the legitimate receiver, through an amplify-and-forward relay node equipped with multiple antennas for reception. Specifically, the relay receives the incoming signal from S via an RF link, applies maximal-ratio combining technique, amplifies the output combined signal with either a fixed gain or variable gain, and then forwards it to the destination via an UOWC link. The transmission protocol is performed under the eavesdropper's attempt to overhear the RF link (i.e., S-R). We derive exact closed-form expressions for the system's average secrecy capacity and the intercept probability in terms of Meijer's G-function as well as the univariate and bivariate Fox's H-functions. A complexity analysis is also performed to analyze the evaluation time of the derived analytical formulas as well as Monte Carlo simulation method complexity. Our derived analytical formulas present an efficient tool to depict the impact of some system and channel parameters on the secrecy performance, namely, the number of relay antennas, the number of eavesdropping nodes, relay gain, fading severity of RF links, and water turbulence severity of the UOWC link.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.