Abstract

Underwater optical wireless communications (UOWCs) are promising and potential wireless carriers to envisage underwater phenomenal activities for various applications towards the futuristic 5G and beyond (5GB) wireless systems. The main challenges to deploy underwater applications are the physicochemical properties and strong turbulence channel conditions. In this regard, the end-to-end (E2E) performance analysis of a dual-hop mixed FSO/UVLC system under the intensity modulation/direct detection (IM/DD) technique in consideration of pulse amplitude modulation (PAM) scheme is investigated. Throughout this study, to tackle the issues of moderate-to-strong turbulence channel conditions, this work deploys the Gamma-Gamma (GG) distribution fading model and the links are designed by unifying plane wave models in the corresponding links, respectively. This investigation outperforms higher achievable data rate with minimal delay response and enhance network connectivity in real-time monitoring scenarios as compared with the traditional underwater wireless communication technologies. In more contrast, the probability distribution function (PDF), cumulative distribution function (CDF), and closed-form expression of the system are derived and presented in terms of Meijer-G function as well as Extended Generalized Bivariate Meijer-G Function (EGBMGF). The significant E2E performance metrics are obtained by employing the decode-and-forward (DF) relay protocol in hostile channel conditions. In aggregating this work, we combine the analytical expressions that present an efficient tool to depict the impact of channel parameters on the system. The simulation results are plausible of the system performance metrics as average BER (ABER) and outage probability <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(P_{out})$ </tex-math></inline-formula> in the presence of pointing and without pointing error events. Finally, in this work, we use the Monte-Carlo approach for the best fitting curves and validate the numerical expression yields simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call