Abstract

AbstractStructural damage in buildings designed according to the dissipative design philosophy can be significant, even under moderate earthquakes. Repair of damaged members is an expensive operation and may affect building use, which in turn increases the overall economic loss. If damage can be isolated to certain dissipative members realized to be removable following an earthquake, the repair costs and time of interruption of building use can be reduced. Dual structural configurations, composed of a rigid subsystem with removable ductile elements and a flexible subsystem, are shown to be appropriate for the application of removable dissipative element concept. Eccentrically braced frames with removable links connected to the beams using flush end‐plate bolted connections are investigated as a practical way of implementing this design concept. High‐strength steel is used for members outside links in order to enhance global seismic performance of the structure by constraining plastic deformations to removable links and reducing permanent drifts of the structure. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.