Abstract

This work reports a dual heterojunction of etched MIL-68(In)-NH2 (MN) supported heptazine-/triazine-based carbon nitride (HTCN) via a facile hydrothermal process for photocatalytic ammonia (NH3 ) synthesis. By applying the hydrothermal treatment, MN microrods are chemically etched into hollow microtubes, and HTCN with nanorod array structures are simultaneously tightly anchored on the outside surface of the microtubes. With the addition of 9 wt% HTCN, the resulting dual heterojunction presents an enhanced photocatalytic ammonia yield rate of 5.57mm gcat -1 h-1 with an apparent quantum efficiency of 10.89% at 420nm. Moreover, stable ammonia generation using seawater, tap water, lake water, and turbid water in the absence of sacrificial reagents verifies the potential of the dual-heterojunction composites as a commercially viable photosystem. The obtained one-dimensional (1D) microtubes and coating of HTCN confers this unique composite with extended visible-light harvesting and accelerated charge carrier migration via a multi-stepwise charge transfer pathway. This work provides a new strategy for optimizing nitrogen (N2 )-into-ammonia conversion efficiency by designing novel dual-heterojunction catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.