Abstract

Though a Hermite subdivision scheme is non-stationary by nature, its non-stationarity can be of two types, making useful the distinction between Inherently Stationary and Inherently Non-Stationary Hermite subdivision schemes. This paper focuses on the class of inherently stationary, dual non-interpolatory Hermite subdivision schemes that can be obtained from known Hermite interpolatory ones, by applying a generalization of the de Rham corner cutting strategy. Exploiting specific tools for the analysis of inherently stationary Hermite subdivision schemes we show that, giving up the interpolation condition, the smoothness of the associated basic limit function can be increased by one, while its support width is only enlarged by one. To accomplish the analysis of de Rham-type Hermite subdivision schemes two new theoretical results are derived and the new notion of $$HC^{\ell }$$ -convergence is introduced. It allows the construction of Hermite-type subdivision schemes of order $$d+1$$ with the first element of the vector valued limit function having regularity $$\ell \ge d$$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.