Abstract

Volition and sense of agency are two primary components of a voluntary or internally generated movement. It has been shown that movement selection cannot be altered without interfering with the sense of volition using single pulse transcranial magnetic stimulation over the primary motor cortex. In the current study, we aimed at examining whether modulating the cortical excitability of the final effector in the voluntary motor pathway—the primary motor cortex, using transcranial direct current stimulation (tDCS) would alter movement selection. Our hypothesis was that anodal tDCS would increase motor cortical excitability and thereby decrease the threshold for movement execution, which could favor selection of the contralateral hand. We recruited 13 healthy adults to perform a movement selection task involving free-choice and externally-cued trials while applying real/sham tDCS in a C3-C4 dual-hemispheric electrode montage. Contrary to our hypothesis, we did not observe any effect of tDCS on movement selection either at the individual or group level. However, our data confirms the strong preference of right-handed individuals for the dominant right hand. We also found higher reaction time for internally generated movement compared to externally triggered movement. We therefore conclude that movement selection cannot be influenced at the level of primary motor cortex and that brain areas upstream of the primary motor cortex in the voluntary motor pathway may be possible targets for influencing movement selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call