Abstract

Sufficient generation of H2O2 played an essential role in boosting self-sufficient heterogeneous Fenton reaction. Herein, the dual H2O2 production paths were designed to maximize the yield over H2O2-etched MoS2/FeS2 Z-scheme heterojunction, whose surface was modified with abundant –OH groups and sulfur vacancies (SVs). Mechanism studies revealed that H2O2 was generated via two-step single-electron reduction by electrons on conduction band, where H2O2 production was significantly improved by the internal hole-scavenging effect from –OH groups. Additionally, electrons surrounding SVs served as another sites for H2O2 production via one-step two-electron reduction even in darkness. H2O2 yield in neutral aqueous solution reached 1.5 mM/g/h without external hole scavenger. Tetracycline and rhodamine B were effectively degraded under light or in darkness. The degradation performance was even comparable to the heterogeneous Fenton reaction. This work provides new insights for the design of self-sufficient heterogeneous Fenton system with exceptional degradation performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call