Abstract
Analysis of post-contraction MRI signal intensity (SI) transients may allow noninvasive studies of microvascular reactivity and blood oxygenation recovery. The purpose of this study was to determine the physiological basis for post-contraction changes in short-echo (6 ms) and long-echo (46 ms) gradient-echo (GRE) MRI signals (S(6) and S(46), respectively). Six healthy subjects were studied with the use of dual GRE MRI and near-infrared spectroscopy (NIRS). S(6), S(46), total hemoglobin concentration ([THb]), and oxyhemoglobin saturation (%HbO(2)) were measured before, during, and after 2 and 8 s dorsiflexion maximal voluntary contractions, and 5 min of proximal arterial occlusion. The changes in S(6) and [THb] after the 2-s contractions were similar to those following 8-s contractions, but changes in %HbO(2) and S(46) were greater following 8-s contractions than after the 2-s contractions. [THb] and S(6) did not change during and following 5 min of arterial occlusion, but %HbO(2) and S(46) were both significantly depressed at similar occlusion durations. Also, distance measures indicated similarity between S(6) and [THb] and between S(46) and %HbO(2). We conclude that following brief human skeletal muscle contractions, changes in S(6) primarily reflect changes in blood volume and changes in S(46) primarily reflect changes in blood oxygenation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.