Abstract

The aptamer domain of the theophylline riboswitch was randomized to generate a library containing millions of different variants. Dual genetic selection utilizing the cat-upp fusion gene was performed for the library, which successfully led to the identification of a caffeine-specific synthetic riboswitch. When a chloramphenicol-resistance gene was expressed under control of this riboswitch, E. coli cells showed chloramphenicol resistance only in the presence of caffeine. When inserted upstream of the gfpuv or lacZ gene, the caffeine riboswitch induced the expression of green fluorescent protein or β-galactosidase in the presence of caffeine, respectively. When tested with various concentrations of caffeine, the β-galactosidase activity was proportional to the amount of caffeine, clearly indicating the caffeine-dependent gene regulation by the caffeine riboswitch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.