Abstract

The field of neuromorphic computing systems has been through enormous progress in recent years, whereas some issues are still remaining to be solved. One of the biggest challenges in neuromorphic circuit designing is the lack of a robust device with functions comparable to or even better than the metal-oxide-semiconductor field-effect transistor (MOSFET) used in traditional integrated circuits. In this work, we demonstrated a MoS2 neuristor using a dual-gate transistor structure. An ionic top gate is designed to control the migration of ions, while an electronic back gate is used to control electronic migration. By applying different driving signals, the MoS2 neuristor can be programmed as a neuron, a synapse, or an n-type MOSFET, which can be seen as a fundamental building block in the neuromorphic circuit design. The MoS2 neuristor provides viable solutions for future reconfigurable neuromorphic systems and can be a promising candidate for future neuromorphic computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.