Abstract

The layered semiconductor black phosphorus has attracted attention as a 2D atomic crystal that can be prepared in ultra-thin layers for operation as field effect transistors. Despite the susceptibility of black phosphorus to photo-oxidation, improvements to the electronic quality of black phosphorus devices has culminated in the observation of the quantum Hall effect. In this work, we demonstrate the room temperature operation of a dual gated black phosphorus transistor operating as a velocity modulated transistor, whereby modification of hole density distribution within a black phosphorus quantum well leads to a two-fold modulation of hole mobility. Simultaneous modulation of Schottky barrier resistance leads to a four-fold modulation of transcon- ductance at a fixed hole density. Our work explicitly demonstrates the critical role of charge density distribution upon charge carrier transport within 2D atomic crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call