Abstract
Connexins, the family of proteins that form vertebrate gap junctions, have key roles during development and in the adult. Previously, the physiological actions of connexins have been ascribed solely to formation of gap junction channels and thought to be mediated by the transfer of small molecules between neighboring cells. In conflict with this hypothesis here we demonstrate that Cx43 can affect cell growth independently of gap junction formation. This conclusion is based on four findings: (1) There is a lack of correlation between the action of Cx43 mutants Cx43–S255A, Cx43–S279A, and Cx43–S282A on growth and cell coupling in 3T3 A31 fibroblasts. (2) Blockade of gap junction formation, by either heptan-1-ol treatment or culturing cells at low density, had no effect on the ability of the Cx43 mutants to control growth. (3) Wildtype Cx43 inhibited growth of Neuro2a cells under conditions where gap junctions were unable to form. (4) The CT domain of Cx43, which lacks intrinsic gap junction activity, is as effective as the wildtype molecule in suppressing the growth of Neuro2a cells. These observations demonstrate that Cx43 has dual functions: first, its well-accepted role in forming a gap junction channel and, second, a direct action of the connexin protein on growth that is mediated via the cytoplasmic carboxyl domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.