Abstract

AbstractIn cancer therapy, the selective targeting of cancer cells while avoiding side effects to normal cells is still full of challenges. Here, we developed dual‐functionalized crescent microgels, which selectively captured and killed lung cancer cells in situ without killing other cells. Crescent microgels with the inner surface of the cavity functionalized with antibody and containing glucose oxidase (GOX) in the gel matrix have been produced in a microfluidic device. These microgels presented high affinity and good selectivity to lung cancer cells and retained them inside the cavities for extended periods of time. Exposing the crescent hydrogels to physiological concentrations of glucose leads to the production of a locally high concentration of H2O2 inside the microgels’ cavities, due to the catalytic action by GOX inside the gel matrix, which selectively killed 90 % cancer cells entrapped in the microgel cavities without killing the cells outside. Our strategy to create synergy between different functions by incorporating them in a single microgel presents a novel approach to therapeutic systems, with potentially broad applications in smart materials, bioengineering and biomedical fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.