Abstract

Lithium–sulfur batteries are very promising for next-generation energy storage. However, most studies use flooded electrolytes to achieve a high specific capacity at the expense of lowering the specific energy. Understanding lithium–sulfur battery performance with lean electrolytes is highly desirable. Herein, a modified Pechini method is developed to synthesize a nanoporous carbon host decorated with Ni3S2@Ni particles. Such a cathode delivers enhanced specific capacities with extended cycling life in lean electrolytes, due to the dual functions of the Ni3S2 shell, which can both facilitate reaction kinetics and promote electrolyte wetting. This work highlights a strategy to rationally design cathodes for high-energy lithium–sulfur batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call