Abstract

AbstractAt present, the commercial application of Li─S cells is impeded by many challenging issues, especially the shuttle effect of dissolved lithium polysulfides (LiPSs) and severe dendritic growth. Applying a sole kind of host material owing dual functions, including inhibiting LiPSs dissolution/shuttling andguiding Li plating/stripping, has recently become a prospective solution. Currently, a systematic review of advanced dual‐functional electrodes aiming at the cathode and anode side simultaneously is scarce. Herein, this review points at such dual‐functional electrodes and summarizes the recent progress from the select host materials to designs. First, the rough challenges and ordinary solutions on the single side of the Li─S cell are illustrated. Then, the potentials of different materials to dual‐functional electrodes are discussed, such as carbon‐based materials, single‐atom catalysts (SACs), transition metal compounds (TMCs), heterostructure hybrids (HHs), and polymers. After that, the design methods for dual‐functional electrodes with high performance are explored and summarized by slurry‐coating and self‐supporting (electrospinning (ES), 3D printing (3DP), solvent method (SM), chemistry vapor deposition (CVD) and vacuum filtration (VF)). Besides, the possibility of applying the dual‐functional electrodes to other metal‐sulfur cells is discussed. Finally, design principles and prospects in dual‐functional electrodes for future research and commercial application are proposed as guidelines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call