Abstract

Clindamycin (CDM)/geranylgeraniol (GGOH)-loaded plasma-treated mesoporous silica nanoparticles/carboxymethyl chitosan composite hydrogels (CHG60 and CHG120) were developed for the prevention of medication-related osteonecrosis of the jaw associated with bisphosphonates (MRONJ-B). The pore structure and performances of CHGs, e.g., drug release profiles and kinetics, antibacterial activity, zoledronic acid (ZA)-induced cytotoxicity reversal activity, and acute cytotoxicity, were evaluated. The bioinspired platform mimicking in vivo fibrin matrices was also proposed for the in vitro/in vivo correlation. CHG120 was further encapsulated in the human-derived fibrin, generating FCHG120. The SEM and μCT images revealed the interconnected porous structures of CHG120 in both pure and fibrin-surrounding hydrogels with %porosity of 75 and 36%, respectively, indicating the presence of fibrin inside the hydrogel pores, besides its peripheral region, which was evidenced by confocal microscopy. The co-presence of GGOH moderately decelerated the overall releases of CDM from CHGs in the studied releasing fluids, i.e., phosphate buffer saline-based fluid (PBB) and simulated interstitial fluid (SIF). The whole-lifetime release patterns of CDM, fitted by the Ritger-Peppas equation, appeared nondifferentiable, divided into two releasing stages, i.e., rapid and steady releasing stages, whereas the biphasic drug release patterns of GGOH were observed with Phase I and II releases fitted by the Higuchi and Ritger-Peppas equations, respectively. Notably, the burst releases of both drugs were subsided with lengthier durations (up to 10-12 days) in SIF, compared with those in PBB, enabling CHGs to elicit satisfactory antibacterial and ZA cytotoxicity reversal activities for MRONJ-B prevention. The fibrin network in FCHG120 further reduced and sustained the drug releases for at least 14 days, lengthening bactericidal and ZA cytotoxicity reversal activities of FCHG and decreasing in vitro and in ovo acute drug toxicity. This highlighted the significance of fibrin matrices as appropriate in vivo-like platforms to evaluate the performance of an implant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.